हेलो दोस्तों आज हम इस पोस्ट में आवेग के बारे में पड़ेंगे आवेग क्या है आवेग का सूत्र क्या है आवेग अर्थ क्या है, आवेग परिभाषा क्या है,आवेग हिंदी मीनिंग क्या है, और कभी-कभी आपसे क्वेश्चन पेपर में बहुत सारे सवाल आवेग जुड़े पूछे जाते हैं आवेग जुड़ी पूरी जानकारी हमने इस पोस्ट में दी है आप इस पोस्ट को पढ़ने के बाद आवेग पूरी तरह से जानकारी हो जाएगी परिभाषा उदाहरण सब कुछ हमने आसान और सरल भाषा में आप लोगों को समझाने की पूरी कोशिश की है जिससे आप लोग आवेग क्या है अच्छे से समझ जाएं |
आवेग ( Impulse) क्या है,परिभाषा लिखिए ,सूत्र , अर्थ, इकाई, विमीय सूत्र, S.I मात्रक Impulse Meaning In Hindi
दैनिक जीवन में घटित होने वाली अनेक घटनाओं जैसे- किसी गेंद का दीवार से टकराकर वापस लौटना, कील का हथौड़े द्वारा दीवार में ठोकना, क्रिकेट की गेंद का बल्ले से टकराना आदि मैं एक वस्तु द्वारा दूसरी वस्तु पर अल्प समय के लिए बल लगाया जाता है जिसके कारण संवेग मैं परिमित परिवर्तन उत्पन्न होता है | यह बल आवेगी बल ( Impulsive Force ) कहलाते हैं |
आवेगी बल नियत नहीं रहते हैं बल्कि समय के 0 से अधिकतम के बीच अत्यंत जटिल रूप से बदलते हैं | इन स्थितियों मैं बल तथा समय को पृथक पृथक सुनिश्चित करना कठिन होता है परंतु बल के कुल प्रभाव को एक भौतिक राशि आवेग ( Impulse) द्वारा मापा जा सकता है |
बल का आवेग , कार्यरत औषध आवेगी बल तथा समय अंतराल के गुणनफल के बराबर होता है |
यदि औसत आवेगी बल सूक्ष्म समय अंतराल ∆t के लिए कार्य करें, तब
बल का आवेग (I)= F×∆t
आवेग का मात्रक S.I. पद्धति में न्यूटन सेकंड तथा C.G.S. पद्धति में डायन सेकंड या ग्राम सेमी प्रति सेकंड है | इस का विमीय सूत्र [ MLT⁻¹] है | यह एक सदिश राशि है जिसकी दिशा लगाएं गए बल की दिशा में होती है |
आवेग ( Impulse)
आवेग ( Impulse) को अगर हम आसान भाषा में पड़े तो
आवेग ( Impulse) एक वस्तु द्वारा दूसरी वस्तु पर अत्यंत अल्प समय के लिए लगाया गया बल जिसके कारण संवेग में पर्याप्त परिवर्तन हो आवेगी बल कहलाता है |
इस बल का आवेग, वस्तु पर कार्यरत औसत बल तथा समय अंतराल के गुणनफल के बराबर होता है |
बल का आवेग = वस्तु के संवेग में परिवर्तन |
आवेश तथा संवेग मै संबंध (Relation Between Impulse And Momentum )
न्यूटन के गति विषयक द्वितीय नियम से,
F→=dp→ / dt अथवा F→ dt= dp→
यदि वस्तु पर समय t₁ से t₂ तक कार्यरत आवेगी बल के कारण उसका संवेग p₁ → से परिवर्तित होकर → p₂ हो जाए, तब
आवेग का सूत्र ( Impulse Formula)
∫t¹t₂ F.dt =∫p²p₁ dp = [p]p²p₁=[p₂-p₁]यदि वस्तु पर कार्यरत औषध बल Fav हो तथा बल सूक्ष्म समय अंतराल ∆t के लिए कार्यरत हो तब
∫t¹t₂ F.dt =Fav ∆t =[p₂-p₁]
अतः आवेगी बल का आवेगी , वस्तु के संवेग में परिवर्तन के बराबर होता है |
आवेगी बल के कारण संवेग परिवर्तन होने पर-
औसत बल Fav =∆p /∆t
वस्तु के संवेग में समान परिवर्तन के लिए
Fav .∆t= नियंताक
अतः दैनिक जीवन की अनेक घटनाओं-जैसे क्रिकेट की गेंद को लपक के समय वाहनों में स्प्रिंग निकाय लगाकर कांच के बर्तनों को कागज में लपेट कर उनके संवेग में परिवर्तन में लगे हमें को बढ़ाकर औषध बल को घटा दिया जाता है| इसके विपरीत किसी फुटबॉल को ठोकर मारने तथा क्रिकेट के बल्ले से गेंद को मारने के समय को हटा कर उन पर कार्यरत औसत बल को बढ़ा दिया जाता है |
यदि किसी वस्तु पर कार्यरत औसत बल तथा समय के बीच एक ग्राफ खींचे तब बल समय वक्र रेखा तथा समय अक्ष के बीच धीरा क्षेत्रफल बल के आवेग अर्थ अर्थ संवेग परिवर्तन को व्यक्त करता है |
किसी वस्तु के संवेग में समान परिवर्तन अधिक बल कम समय तक लगा कर या कंबल अधिक समय तक लगाकर कर सकते हैं | यदि बल F1 को किसी वस्तु पर t1 समय तक लगाने पर तथा बल F2 ( F2 >F1) को उसी वस्तु पर t2 समय (t2>t1) ट्रक लगाने पर वस्तु के संवेग में समान परिवर्तन हो तब नीचे दिए गए चित्र में देखें
F1×t1 = F2×t2
क्षेत्रफल OABC = क्षेत्रफल ODEF
किसी परिवर्ती बल F का समय अंतराल dt में आवेग
=F×dt
= छायांकित पट्टी PQRS का क्षेत्रफल
परिवर्ती बल F का समय t1 से t2 तक कुल आवेग
∫t¹t₂ F×dt
t1 से t2 तक सभी पतियों के क्षेत्रफल ओ का योग
=F-t वक्र रेखा तथा समय अक्ष के बीच गिरी आकृति का क्षेत्रफल
दैनिक जीवन में आवेग (अथवा न्यूटन के गति विषयक द्वितीय नियम ) के उदाहरण
1. क्रिकेट खिलाड़ी गेंद को लपकते समय हाथों को पीछे की ओर खींच लेता है-इसका कारण है कि यदि क्रिकेट खिलाड़ी गेंद को लपकते समय हाथों को स्थिर रखें तब गेंद का संवेग शीघ्र 0 हो जाता है | न्यूटन के गति विषयक द्वितीय नियम से-
F=∆p / ∆t अथवा F=∆t/∆p
अतः गेंद को रोकने के लिए हाथों को अधिक बल लगाना पड़ता है तथा गेंद भी उतनी ही प्रतिक्रिया हाथों पर लगाती है जिससे हाथों पर अधिक चोट लगती है |
यदि क्रिकेट खिलाड़ी गेंद को लव कते समय अपने हाथों को गेंद की गति की दिशा में पीछे की ओर खींच लेता है तब गेंद के संवेग को 0 करने में लगा समय बढ़ जाता है | अता हाथों को गेंद को रोकने के लिए कम बल लगाने की आवश्यकता पड़ती है परिणाम स्वरूप अब गेंद दी हाथों पर कम प्रतिक्रिया बल लगाती है और हाथों पर कम चोट लगती है |
2. उदाहरण- वाहनों में स्प्रिंग लगे होते हैं
इसका कारण है कि वाहन जब किसी अनियमित सड़क पर गड्ढों में गति करते हैं तो वाहन पर झटको द्वारा बल कार्य करता है | वाहन मैं लगे स्प्रिंग के कारण बल को वाहन चालक तक पहुंचने में अधिक समय लगता है अतः F.∆t=∆p के अनुसार वाहन चालक के संवेग परिवर्तन में अधिक समय लगने के कारण उस पर क्रम बल कार्य करता है |
उदाहरण 3-कांच के बर्तनों को डिब्बों में कागजों अथवा तिनको में लपेट कर रखते हैं
इसका कारण है कि कांच के बर्तन को एक स्थान से दूसरे स्थान पर ले जाते समय अधात मैं यह बर्तन परस्पर टकराते हैं जिससे बर्तन कभी कभी टूट भी जाते हैं | यदि कांच के बर्तनों को कागज में लपेट कर रखा जाए तब अघात में लगे बल को बर्तनों तक पहुंचने में अधिक समय लगता है अतः बर्तनों के संवेग परिवर्तन में अधिक समय लगता है | अतः F.∆t=∆p के अनुसार बर्तनों पर कम बल लगता है और उनके टूटने का भय कम हो जाता है |
कुछ महत्वपूर्ण प्रश्न आंसर
Q1. किसी वस्तु के जड़त्व की माप कौन सी भौतिक राशि है?
-उत्तर-वस्तु का जड़त्व द्रव्यमान |
Q2. एक कार एवं बस में से किस का जड़त्व अधिक होगा?
उत्तर-बस का द्रव्यमान कार से अधिक होता है अतः बस का जड़त्व कार से अधिक होगा |
Q3. न्यूटन के गति विषयक किस नियम द्वारा बल को परिभाषित किया जा सकता है?
उत्तर-न्यूटन के गति विषयक प्रथम नियम द्वारा |
Q4. बल तथा त्वरण में क्या संबंध है?
उत्तर बल F=ma
Q5. बल का S.I. मात्रक लिखिए क्या है?
उत्तर-बल का S.I. मात्रक न्यूटन है |
Q6. बल कैसी राशि है?
उत्तर-बल एक सदिश राशि है |
दोस्तों उम्मीद है कि आपको आवेग से जुड़ी पूरी जानकारी इस पोस्ट में आपको मिल गई होगी अगर आपको कोई समस्या है तो हमें कमेंट बॉक्स में हम से पूछ सकते हैं हम आपके सवाल का जवाब देने की पूरी कोशिश करेंगे उम्मीद है आवेग से जुड़ी जानकारी सरल और आसान भाषा में हमने आप तक पहुंचाने की पूरी कोशिश की है धन्यवाद |